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The two-dimensional theory of lunate-tail propulsion is extended to motions of 
arbitrary amplitude, regular or irregular, so that an accurate comparison may be 
made with the actual lunate-tail propulsion of scombroid fishes and cetacean 
mammals. There is no restriction at all on the amplitude of motion but the tail's 
angle of attack relative to its instantaneous path through the water is assumed 
to remain small. The theory is applied to the regular finite amplitude motion of a 
thin aerofoil with a rounded leading edge to take advantage of the suction force 
and a sharp trailing edge to ensure smooth tangential flow past the rear tip. 
This can represent the vertical motions of the horizontal lunate tails of large 
aspect ratio with which cetacean mammals propel themselves or the horizontal 
undulations of the vertical lunate tails of certain fast fishes. The dependence of 
the thrust, the hydromechanical propulsive efficiency and the energy wasted in 
churning up the eddying wake on the reduced frequency, the angle of attack and 
the amplitude of motion is exhibited. 

1. Introduction 
The study of the problem of the locomotion of animals in general, and marine 

organisms in particular, includes as a major component an analysis of how the 
animals can elicit a propulsive force by oscillatory motions in the surrounding 
medium. Part of the work done in those motions is used for balancing the body's 
viscous resistance whereas the rest is wasted in churning up the fluid in the eddy- 
ing wake. It is obvious that for efficient swimming the rate of working should be 
as close as possible to the thrust, which balances the resistance of the water, 
times the cruising speed. Lighthill's (1969, 1970, 1971, 1975) fundamental 
studies of animal locomotion, carried out with great hydrodynamical brilliance 
and zooIogica1 insight, bring out the importa,nt concept of the hydromechanical 
propulsive efficiency, which is akin to the Froude efficiency of a propeller and 
defined as the ratio of the mean rate of working of the forward thrust to the 
mean rate of work done by the movements of the body and its appendages on 
the surrounding fluid. The advantages of increasing this parameter may have 
constituted one of the important guiding factors in the evolutionary development 
of swimming animals. This parameter depends on the propulsive mode, which, 
following Breder (1926), can be broadly classified as anguilliform or carangiform. 

t Present address : Defence Science Laboratory, Metcalfe House, Delhi, India. 
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These categories blend into one another, and should not be thought of as sharply 
distinct. In  addition, there are some equally interesting but, perhaps, not so 
egcient modes of propulsion such as pectoral-fin swimming, jet propulsion etc. 

Undulatory propulsion, in which a transverse wave of increasing amplitude 
passes along the body from head to tail, is found in animals swimming with 
relatively low hydrodynamical efficiency. Ciliary and flagellar propulsion of 
micro-organisms, swimming at very low values of the Reynolds number R based 
on the animal’s length and the forward velocity, the motion of almost all the ani- 
mals swimming a t  low to moderate R ( Q lo3) and the motion of bad hydro- 
mechanical shapes, whose cross-sectional form is not such as to enhance the 
virtual-mass effect, swimming at  high R fall in this category. The theory dealing 
with the locomotion of these animals was named ‘resistive’ by Lighthill (1971) 
as the force between a small section of the animal and the surrounding water is 
a resistive force which depends mainly on the instantaneous value of the velocity 
of that section relative to the water. Hancock (1953) generalized Taylor’s (1952) 
small amplitude analysis for low Reynolds numbers to undulatory motions of 
arbitrarily large amplitude by an ingenious method of distribution of Stokeslets 
and source doublets along the instantaneous centre-line of the organism a t  each 
instant. 

In  carangiform propulsion, the amplitude of undulation can be small or even 
zero in the anterior half or two-thirds of the body, increasing posteriorly to a 
large value near the trailing edge with a phase lag. This mode-of swimming, a 
development of the anguilliform mode, relies more on the reactive forces which 
can always operate at a better efficiency and is found in a wide variety of fishes 
and other vertebrates. Animals using the carangiform mode produce sudden 
accelerations in the water and the resultant thrust is derived from the reactive 
rate of change of fluid momentum. Lighthill (1960, 1970), using the ideas of 
slender-body theory, developed the elongated-body reactive-force theory, which 
is applicable to the majority of the fishes using the carangiform mode of propul- 
sion, and was able to establish that higher speeds and efficiency can be achieved 
with certain morphological alterations, viz., necking of the body anterior to the 
caudal fin and maintenance of large depth of the cross-section near the mass 
centre, needed for reducing recoil due to unbalanced oscillations of the side- 
force. The large amplitude elongated-body theory was developed by Lighthill 
(1971) by an appropriate distribution of source doublets along the spinal column 
of the fish, and was effectively used by Weihs (1972) in analysing Gray’s (1968) 
data on fish turning. 

All the fast marine animals, namely certain scombroid fishes, certain sharks 
and all the cetacean mammals, have adopted essentially the carangiform mode 
of propulsion, their tails having converged to a crescent-moon shape of high 
aspect ratio through different pathways of evolution in the pursuit of high hydro- 
mechanical propulsive efficiency. Profound necking anterior to the lunate tail 
imparts to it the character of a propeller to which all the undulations are confined. 
This mechanism of swimming may be termed ‘ lunate-tail swimming propulsion ’ 
as it is characteristically found in the animals having lunate tails. 

Lighthill’s (1960, 1971) elongated-body theory cannot be applied here as its 
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fundamental assumption, that the disturbances are produced by body actions 
distributed along the body axis, breaks down. The action of the lunate tail is 
spread out at  right angles to the direction of motion: vertically in the case of 
fishes and horizontally in the case of cetacean mammals. A keener look at  the 
lunate tail shows that it is like an aeroplane wing, with every chordwise section 
resembling an aerofoil having a rounded leading edge and a sharp trailing edge, 
which suggests that the techniques of unsteady wing theory can be applied to 
study lunate-tail hydrodynamics. Either of the following two met’hods can be 
used to analyse the problem. 

(i) Start with the hydrodynamical equations and make use of potential theory. 
(ii) Construct the solution using a distribution of vortices or sources. 
Lighthill (1970) made a start on the study of lunate-tail hydrodynamics by the 

first method and based his analysis on Prandtl’s concept of the acceleration 
potential, which had earlier been brilliantly applied in Possio’s (1940) work on 
the motion of aerofoils in compressible media and Wu’s (1961) work on the 
swimming efficiency of thin plates. Chopra ( 1974) based his three-dimensional 
analysis of unsteady lunate-tail hydrodynamics on the vorticity distribution 
and found it convenient for representing the effect of the streamwise wake 
vorticity, resulting from the finiteness of the span, which was neglected in 
Lighthill’s (1970) two-dimensional theory. The analysis gave a clear picture of 
the dependence of the forward thrust and the hydromechanical efficiency on the 
complete range of values of the aspect ratio,-the feathering parameter and the 
reduced frequency besides the important confirmation that the pitching axis has 
to be approximately along the trailing edge for best efficiency. In  spite of its 
generality the study is inadequate for providing an accurate comparison with 
lunate-tail propulsion because Pierstine & Walters’ (1968) experiments on the 
wavyback skipjacks show that the amplitude (the distance between the maxi- 
mum lateral excursion of a given point along the tail and the axis of progression 
measured perpendicular to the axis of progression) of the tail movement is of 
the order of two chord lengths, large enough to invalidate the results of small 
amplitude theory. 

The object of this paper is to work out a two-dimensional reactive-force theory 
which could be applied to large amplitude lunate-tail propulsion. This analysis 
is complementary to Hancock’s (1953) ‘large amplitude resistive theory’ and 
Lighthill’s (1971) ‘large amplitude elongated-body theory ’. Heaving and pitch- 
ing motion is considered. This characterizes the tail flukes of cetacean mammals 
such as whales and dolphins. The same motions turned through a right angle will 
represent the oscillations of the lunate tails of fishes. The analysis is carried out 
for motion of arbitrary amplitude, regular or irregular, and the general expres- 
sions for the thrust, the power required to maintain motion, the energy imparted 
to the wake and the hydromechanical propulsive efficiency are determined for 
this general motion as functions of the physical parameters defining the problem: 
namely the reduced frequency, the path amplitude and the angle of incidence. 

Unsteady motion of an aerofoil is accompanied by shedding of the boundary 
layer from the trailing edge in the form of a thin vortex sheet, and its intensity is 
determined here from the integral equation obtained from the law of conservation 

11-2 



164 1M. G. Chopra 

of circulation. Subsequently, the complete vorticity distribution of the system 
is worked out using Wagner’s (1925) concepts and the theory of impulses is 
applied to find the forces and moment experienced by the aerofoil. The hydro- 
mechanical swimming efficiency is analysed from work and energy considerations. 

Finally, a case of regular finite amplitude motion of the aerofoil is discussed in 
detail and the theory is subjected to several checks by way of comparisons with 
Lighthill’s (1 970) small amplitude theory. Some representative curves are given 
to show the dependence of the thrust coefficient (mean forward thrust per unit 
area scaled on static pressure) and the hydromechanical efficiency on the path 
amplitude, the angle of attack and the reduced frequency. 

An assumption that simplifies all the analysis is that, although the heaving 
motions are of large amplitude, the accompanying pitching motions are such 
that the effective angle of attack (the angle between the plane of the lunate tail 
and its direction of motion through the water) remains relatively small. As a 
result, the vortices shed are relatively weak and remain fairly close to where 
they are shed. The modest amount of available observational data, coupled with 
the likelihood of serious flow separation if this condition were not satisfied, 
seems to make this assumption a reasonable one. 

2. Vorticity distribution 
The theory is set out in a frame of reference in which thewater far from the 

swimming animal is at  rest. The Y axis is vertically upwards, the - X axis along 
the constant mean direction of swimming and the Z axis is directed to make 
OX Y Z  a right-handed co-ordinate system. 

To describe the large amplitude motions of the lunate tail, a moving right- 
handed co-ordinate system oxyz is attached to the tail with the origin at the 
trailing edge, the x - axis along the mean chord and y axis perpendicular to the 
tail in the upward direction (figure 1). Let the path of the trailing edge be 
9 = X,(t), Y = &(t) .  Then the direction of motion of the trailing edge is B(t ) ,  
where tanB(t) = P,(t)/X,(t) and a dot denotes differentiation with respect to 
time. Let the angle of attack (the angle between the tail’s direction of motion 
and the tail’s surface, assumed small) be a(t). The inclination of the tail to the 
X axis is then given by B( t )  - a(t). Transformation from the co-ordinate system 
fixed in the tail to the co-ordinate system fixed in the fluid at rest can be effected 

I X-X , ( t )  = zcos(O-a)-ysin(O-a), 

Y - &(t) = y cos (0 - a) + z sin (I9 - a). 

through 

The tail itself is y = 0, -2c -= x < 0, and for fixed x on the tail the absolute 
velocity (8, I’) is given by 

8 = X,,(t) - x(8 - oi) sin (8 - a), 
P = IZ,(t)+x(8-&)cos(B-a). 

This absolute velocity thus has a component 

u1 = X c o s ( ~ - a ) +  Fsin(B-a) 
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Y‘ 

Lx=Ly 

FIGURE 1. Co-ordinate systems and conformal representation of tail profile 
and a wake vortex for finite amplitude motion. 

tangential to the tail, in the x direction, and a component 

v1 = Pcos(O-a)-Xsin(O-cr) 

perpendicular to the tail. These components, on substituting for 
making use of the fact that a(t) is small, simplify to 

and P and 

where 

ul = x,secf3, v1 = A - t x B ,  (2)’ (3) 

A = a&sec6, B = 8-oi. 

By assuming that the flow about the lunate tail is two-dimensional, that the 
movement of any part of the tail from the path described by the trailing edge is 
small and that the vortices shed from the trailing edge lie along the path of the 
trailing edge, the analysis can be carried out without excessive complica- 
tions. The complex-conjugate velocity d W/dz = a$/ax - i a$/ay for the absolute 
motion of the fluid exterior to the profile of the body is given by Cauchy’s formula: 

which, making use of (3) and the fact that 

i- (,,,,)+ for y-f +o, 

for y+ -0,  
- X  
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becomes 

The clockwise vortex intensity yo(x) on the aerofoil is given by 

The total quasi-steady vorticity r0 (the vorticity which would be produced, 
according to Munk’s (1922, 1934) thin-aerofoil theory, by the motion of the 
aerofoil or by the given velocity distribution in the a,ir if the wake had no effect) 
can be obtained by integrating the vortex intensity yo(x)  from the leading edge 
to the trailing edge, viz. 

ro = 742.4 - C B ) .  (6) 

However, as the total circulation around the aerofoil is variable, because of 
the non-uniformity of the motion, an equivalent amount of oppositely directed 
vorticity must be shed from the trailing edge in the form of a wake composed of 
continuously distributed vortex lines, and the interference from this wake must 
be taken into account. The vortex intensity of the wake is determined from the 
following two conditions. 

(i) The total vorticity of the whole system is invariant, br equivalently the 
rate of change of the circulation around the aerofoil is equal to the rate of vortex 
shedding. 

(ii) The vortices can be regarded as remaining a t  the places where they are 
shed. 

The effect of an element of vorticity I” located a t  a point in the wake may be 
evaluated by the method of conformal transformation as shown in figure 1. 
The aerofoil can be mapped onto a circle in the x’ plane through 

x + c = z’ + a2/d with a = Qc, (7) 

in which case the region outside the aerofoil in the z plane is transformed into 
the region outside the circle in the z’ plane. Here and later on x and z’ are used 
to denote x + iy and x’ + iy’ as there is no likelihood of confusion because the flow 
is considered to be two-dimensional. 

Any point vortex r” situated at  the origin of the z’ plane has streamlines which 
are concentric circles with centre at the point where the vortex is located. It is 
well known that a point vortex can be introduced at any other point of the 
circular region without disturbing the streamlines if a second vortex with 
circulation of the same magnitude but opposite sign is placed at the inverse 
point. Thus the vortices I?’ at x;  and - I” a t  a2/X; along with any point vortex r”’ 
a t  the centre of the circle will make the circle a streamline. 

The complex potential W(z’ )  due to this vortex distribution (figure 1) is 
given by 

W(z’) = - log 2’ - r j  -log (2‘ - 2;) - -log 2’. ir‘[ 271. ( ::) I E  
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$ Z d z  = $ ( u d x + v d y ) + i  (udy-wdx) .  I 
The real part of this is the circulation and the imaginary part multiplied by p ,  
the density of the fluid, is the mass flux across the contour, which is zero in our 
case as there are no sources present, and therefore 

r” can be obtained from the Kutta condition of tangential flow at the trailing 
edge as follows: 

. dW z u- t v  = - = - 

where Z‘ is the complex conjugate of z‘. On the aerofoil, which is a circle in the z’ 
plane, by setting z’ = aeie 

At the trailing edge 8 = 0, there will be a singularity unless 

where z; is known in terms of z1 through 

2; = ~ { ( ~ + C ) + [ ( z + C ) 2 - C 2 ] + } .  (9) 

r = r’(al/p- i), (10) 

The total vorticity induced by a point vortex I?’ located at  x1 is given by 

where a1 = xi2 + y;2 - a2 and p = xi2 + y;2 + a2 - 2ax;. The vortex intensity in- 
duced on the aerofoil by the wake vortex I?’ is given by 

Yl(4 = Ut-U-7 

where u+ and u- stand for the velocity on the upper and lower sides of the aero- 
foil. Substituting for u- from (8) and simplifying we get 

where 6 = xi2 + y;z + a2, 

T1 = 6 - (x + c )  x; - y/;[cZ - (c + 2 ) 2 ] 4  

T 2  = 6 - ( x  + c )  x; + y;[c2 - (c  + 4 2 1 4 .  

The total induced vorticity I? given by (10) can also be obtained by integrating 
(1 1) from - 2c to 0. For a rectilinear wake (10) and (1  1)  reduce to 

r = rr((,) x1+2c  4 -I] 
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and 

which agree with equations (8) and (7) of von KBrmBn & Sears (1938). 
The vorticity I?, induced by the complete wake can be calculated with the 

help of (10) if we set I" = yfz,) [(dyl/dx1)2 + 114 and integrate over the wake, viz. 

where dy,/dx, is the slope of the path of the trailing edge referred to oxy and I 
is the abscissa of the furthest point of the wake. The circulation about the aero- 
foil at any instant is given by I?,,+ rl. The vorticity I?, in the wake is given by 

and the conservation of circulation gives 

Referring to the fixed co-ordinate system, this can be transformed into 

r, + r r ( x , ) f ( x , ,  X,) sec 4 d X l  = 0, (12) 
x " 

where 0, = tan-, {dYl/dXl} and f(Xl, X,) = a1/P can be calculated for each 
value of X, through (1) and (9). This integral equation of the f i s t  kind, which 
has a kernel with a square-root singularity, can be solved for the wake vortex 
intensity, which in turn through (1 I )  gives the vortex intensity induced on the 
aerofoil, The calculation of the forces and moment experienced by the lunate tail 
and the energy wasted in the wake, based on the impulsive momentum of the 
vortex system, is carried out in the next section. 

3. General expressions for thrust, wake energy and efficiency 
The sum of the strengths of all the vortices, on the tail and in the wake, is 

zero, as in the case of a vortex pair, and therefore the theory of the 'impulse' 
can be applied. Let us consider a domain D of the X, Y plane bounded by a 
contour C, which encloses the aerofoil as well as the wake. For this region 

or 
n 

which ensures the existence of a single-valued velocity potential $ ( X ,  Y) out- 
side C,, and the component of the impulse in the Y direction, Q say, is given by 
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where dS is an element of C, and np is the Y component of a unit inward normal 
to C,. Using the facts that np = dX/dS and that q5 is single valued, (13) becomes 

Q = $ p[X(udS+vdI’)]. 

By shrinking the contour C, to coincide with the aerofoil and the wake and ac- 
counting for the discontinuity in the velocity components tangential to the 
aerofoil and the vortex wake, the following expression for Q can be obtained: 

C1 

Xy(X)sec(8--a)dX+p X,y(Xl)sec8,dX,, 
Q = p s y ’  X,-Zcoos(O-a) 1: 

where I ,  is the X co-ordinate of the furthest point of the wake and X and X, 
are used to express the abscissae of points on the aerofoil and in the wake respec- 
tively. By following a similar andysis, the expressions for the X component P 
of the impulse and the moment M, of the impulse about the mid-chord position 
of the aerofoil can be obtained as 

Yy(X) see (8 -a) dX - p  Y,y(X,) see 8,dX, s”” x , - z c c ~ s  
P = - p  

and 
XO 

Mm = ’/ [X2 + Y 2  - 2XXc - 2YYJ y ( X )  sec (8 - a) dX’ 
2 ~ , - 2 c  cos (8-a)  

where X, = Xo-ccos(8-a), = Yo-csin(8-a). 

Euler’s formulae give 

and 

where (Lx, Lp) denotes the force per unit span experienced by the lunate tail 
and M is the moment per unit span about its mid-chord position. 

We want expressions for the forward thrust that will be uniformly valid for 
large and for small heaving amplitudes. I n  the case of small amplitudes, the 
forward thrust, being a second-order effect, cannot be accurately determined 
from (14) as in our calculation of P we have neglected second-order effects by 
assuming that the vortices remain at the positions where they are shed. But we 
can make use of the vertical force, which is a first-order effect. Furthermore, its 
value when multiplied by tan (8 - a) does give one important component of the 
thrust (see figure 1). However, another important contribution to the forward 
thrust results from the suction force associated with the fast flow around the 
leading edge. This suction force takes instantaneously the well-known steady- 
Aow value and through Blasius’s formula works out to be 

where K(z+2c)-t is the asymptotic form of $[yo(z) +y,(x)] as x+ -2c (yo@) 
and yl(z) are the vorticities induced by the angle of attack and the wake respec- 

L, = -dP/dt ,  Ly = -dQ/dt (141, (15) 

M = -dM,/dt, (16) 

- n-p 1 q 2, 
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tively). The value of K can be obtained using ( 5 )  and (ll), and the suction force 
experienced by the lunate tail per unit span works out to be 

xeferrea t o  the fixed co-ordinate system 

where 

is known for each value of 5, through (1) and (9), and the total forward thrust 
(positive when directed in the -X direction) per unit span of the lunate tail 
is given by 

L, = Fscos (0-a) + L, tan (0-01.). 

The mean forward thrust z, per unit span thus becomes 

The power required to  maintain the motion is equal to the-rate E a t  which 
work is done by the lunate tail, which from the principles of work can be written 
as 

whereas the mean rate of working per unit span is given by 

E = L x 8 , + L , ~ , + M ( B - & ) ,  

The hydromechanical propulsive efficiency, defined as the ratio of the mean rate 
at which useful work is done to the overall mean rate of working, can be ob- 
tained from 

efficiency = .XoZx/E.  (21) 

The swimming efficiency can also be obtained, however, by the method pre- 
ferred below using overall energy-balance considerations. These, according to 
inviscid flow theory, assert that the power input or the rate of doing work E is 
equal to the rate L x x o  a t  which work is done by the forward thrust and that 
the kinetic energy lost to the fluid, which is equivalent to the wake energy, is 
given by 

T = - tP~~@Y(X,)sec0 ,dx1 ,  

where @ is the solution of the Poisson equation 

V2$ = Y(X,) ,  

viz . 
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where y(X,) denotes the value of y a t  ( X 2 ,  Y,) and r stands for 

171 

{ (XI  - XZ)2 + (Yl - Y2)"39. 

The extra energy shed into the wake per unit time by the undulations of the 
aerofoil is given by 

So the mean rate WE a t  which kinetic energy is imparted to the fluid becomes 

and the hydromechanical eficiency of swimming can be obtained from 

efficiency = .XoZx/(XoEx + WE). (22) 

As the trailing vortex sheet is continuously extending, neither WE nor WE can 
be negative. 

This lunate-tail theory, developed for motiokl of arbitrary amplitude, is now 
applied to regular motion of cetacean mammals with horizontal tail flukes. It 
also applies to a variety of fast fishes having relatively large and rigid bodies 
with vertical caudal fins of the order of 2z to & of the total length (the distance in 
a straight line between the most anterior projection of the snout and the tip of 
the longest lobe of the caudal fin), viz. the wahoo, skipjack, tunny, louvar, etc. 
from the Percomorphi and whale sharks, porbeagles etc. from the Selachii, 
which undulate their crescent-moon-shaped fins symmetrically about the caudal 
peduncle without exhibiting any appreciable bending. 

4. Thrust and efficiency resulting from regular finite amplitude 
swimming 

The finite amplitude theory developed in the preceding section is applied to the 
specific problem of the estimation of the thrust and efficiency obtained by the 
above-mentioned animals when swimming at  constant speed through oscillations 
of their lunate tails such that the trailing edge describes a sinusoidal path 
& = h1 cos vt, where h1 is the amplitude of the path and v its radian frequency. 
The variation of the angle of attack depends on many factors, such as the 
muscular power applied to the fin, the velocity of the fin and consequently the 
resistance of the water and the structural strength of the  fin. For simplicity we 
assume that a 90" phase difference exists between the sinusoidally varying angle 
of attack 05 = ol,sin vt and the path. Within the limitations of the reactive-force 
theory of thrust production, we study the balance between the mean thrust, 
produced reactively by the transverse motions of the lunate tail, and the mean 
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drag, produced resistively by the longitudinal motions. As the fish is swimming 
with constant speed U with its axis of progression along the - X axis, 

x,= - U t  

and therefore the direction 0 of the trailing edge is given by 

tan0 = - hwsin(wX,/c), 

where h = h,/c (amplitude of the path scaled on the semi-chord) and w = vc/U is 
the reduced frequency (the ratio of the time taken to travel a distance of 7~ chords 
to the time taken to complete one oscillation). The reduced frequency was 
measured to be 0.45 by Fierstine & Walters (1968) during their careful experi- 
ments on the skipjack, which shows that the unsteady effects cannot be neglected. 
The integral equation (12) in this particular case becomes 

where 

with 

D, = - T T ( W ~ ,  cos w X,/C - 2a see e), 

a, = (01, - wh cos2 e). 
It can be seen that the kernelf(X,, X,) of the integral equation has a square-root 
singularity at the trailing edge X, and cannot be differenti te$ with respect to 
the lower limit to yield an integral equation of the second ind, as was demon- 

time 1, -+ co, and also, because of the periodic oscillations of the lunate tail, the 
vorticity shed into the wake is periodic with zero mean. Accordingly we can 
write (23) as 

strated by Mangler (1951). If the motion is supposed to hav €I continued for a long 

where X, = 27rc/w and I?, accounts for the fluctuations in the wake vorticity. 
If the wake consists of a finite integral number of periods I?, = 0 while if the 
wake extends beyond a finite integral number of periods I?, is non-zero, periodic 
in X, with zero mean and given by 

dr,/dX, = -y(X,) sece. (25) 

?(XI) see 8,/U, being periodic, can be expanded as a Fourier series with zero 
mean, viz. 

y ( X J s e c 4  = O0 [am cos (mwX,) + b, sin (mwX,)], 
U m = l  

which can in turn be used in (25) to yield 

In  (24) we have been able to convert the infinite range of integration to a finite 
one, over one period only, using the periodicity of the wake vorticity but the 
following two difficulties still remain to be overcome before we can apply the 
routine process for solving integral equations of the first kind. 
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(i) The kernel f ( X , ,  X,) is not converging. 
(ii) The kernel has a square-root singularity at the lower limit of integration. 
The first problem is overcome by subtracting a suitable constant value (varying 

appropriately, however, with the number of periods taken into account) from the 
kernel as this does not affect the final result but ensures fast convergence of the 
kernel. The constant is the limit of the kernel as X ,  -+ co and can be obtained as - 
follows: 

xi2  + yi2 - a2 2a 
f(xl, X,) = x;2 + y;2 + a2 - sax; = l+,+O($). X1 

From (9) it can be seen that xi -+ x1 as xi +- co and from (1) x1 -+ X ,  cos (6 - a). 
Therefore 

2a 
f ( X l ?  XO) = 1 + x, cos (8 -a) ++). 

The constant value to be subtracted from the kernel derived from this analysis 
is 2a wsec (8 -a) 

= 1 +  2nn 5 I +  nXpcos(8-a) 

which decreases as X ,  increases. 
The square-root singularity at  the lower limit of integration is removable and 

can be taken care of by the standard procedure of transformation of the variable 
of integration according to x, = x, + u*. 

These modifications convert (24) into 

])du++, (26) 
w see (0 -a) 

where g,(X, + u2) = C [a, cos(mw(X, + u2),> + b, sin (mw(X, + u2),>] 
m 

and g,(X,+u2) = f (X ,+u2+(n-1 )Xp ,X , ) -  1. 

The left-hand side of (26) is known in terms of X ,  and each value of X ,  gives 
an algebraic equation in the Fourier coefficients, whose number can be so chosen 
that the convergence of 

is ensured; for example m = 10 gives values of r (X, ) /U correct to four decimal 
places for the values of the amplitude taken up in our analysis. A typical 
coefficient a, is 

w sec (6 - a) 
n = l  2nn 

sin (mwX,) 
2mw 

--- 

wherein the value of the integral is obtained by Simpson’s rule after the conver- 
gent numerical values of the series and subsequently of the integrand have been 
worked out at the appropriate points of the range of integration. A system of 



174 M .  G. Chopra 

linear algebraic equations is generated by giving different values to X, and solved 
for the Fourier coefficients by the least-square-error method. Numerical values 
of the wake vortex intensity for different w (scaled on the constant speed of 
propagation of the tail) for rectilinear motion obtained from the Fourier co- 
efficients for different positions of x,, through (27), agree with the values 
obtained from equation (76) of Lighthill’s (1970) analysis, which adds to the 
confidence in the method. The merit of this method over the earlier theories of 
Lighthill (1970) and Wu (1971) is that it  is capable of giving a quantitative 
estimate of the vortex intensity of the wake shed by an aerofoil making finite 
amplitude oscillations. Now that the wake vorticity is known at any instant, 
the vortex intensity induced by the complete wake, using (1 1), is given by 

and the vortex intensity induced on the aerofoil by the angle of incidence is given 
by (5), where x is related to X, on the aerofoil, through 

x = (X-X,)sec(O-a). 

The component of the impulse in the Y direction is 

X{y,(X)  + yl(X)} sec (8 - a )  d X  + p  

(28) 

Q = p S x ’  X.- 2c cos (8- a) 

By making use of the integrations 

O [2 - /3(711 +@)I s -2c [CZ - (c + x)”h 
and 

it can be worked out that 

where 
Do = wa, cos (wX,/c) ,  6, = a1/P - 1 

and Yo = ncU(D0-2asec8). 

Substituting back for these expressions in (28) we get 
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and (15) gives, on making use of the result 

dr,/dX, + dr, /dX,  = y(X,)  sec 8, 

-~n{D,cos(8-a)-D~sin(d-a)}+D1{1 +#D,sin(B-a)) 
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L 

- q ~ , c o s ( s - a ) + ~ ~ ~ 6 ~ s e c d , d ~ ,  

- -Im Y(x,)(cY1 + 6,) cos (8 -a) sec B,dX, , (29) 1 d 
d X ,  xo u 

where D, = n[2a sec 8 - wa,  cos (wX,/c)], 

D, = - w2[a2 sin (wX,/c) + 2dh2  sin 8 C O S ~  8 cos2 (wX,/c)], 

D3 = n[D, + 2a, o{sec 8 - hw sin 8 sin (wX,/c)} cos (wX,/c)]  

and 6, = ax;/(x;"+y;2). 

The suction force experienced by the caudal fin per unit span is given by (18) as 

where the integral in (30) expresses the reduction in the forward thrust because 
the wake vortices induce a downwash on the aerofoil which reduces the intensity 
of the fast flow around the leading edge. The suction force obtained for the steady 
case and the small amplitude case agree with the results existing in the literature. 
The thrust coefficient C,, defined as the thrust per unit area divided by 3pU2, 
using (29) and (30) in (19), is given by 

CT = Lx/pcu2 .  (31) 

It may be pointed out that the range of integration of the integrals occurring in 
(29) and (30) may be reduced to a period only, by using the periodicity of 
?(XI) see #,/U, and that the convergence of a,, 8, + 6, and fl(X,, X,) may be 
ensured by subtracting suitable constants on the same lines as in the case of 
f(X,, X,). These values are 

w sec (8 - a)/2nn, 

30 see (8  - a)/2nn 

w see (8 - a ) / 2 h n  

in the case of S,, 

in the case of 6, + 6, 

in the case of fl(X,, X,). and 

The singularity at the lower limit is again removed by the substitution 

x, = X,+U2 

and the differentiation with respect to X, in (29)  is carried out numerically. 
The hydromechanical propulsive efficiency is calculated from energy con- 

siderations as outlined in an earlier section. For this particular motion, the kinetic 
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energy of the wake, which consists of an integral number of wavelengths, say n, 
is given by 

T = - - 1 p ~ 2 j : ~ ~ S ~ ~ ~  y(x,)y(x,)log r sec 8, see 8, dx, d ~ , .  
4n 0 u u  

If the tail moves through another wavelength, the kinetic energy imparted to 
the fluid is given by 

The value of E can be obtained using generalized functions as shown below. 
The integral in the curly brackets, I say, can be expressed as 

Y ( x , )  %og (X, - X,) dX, u 
O0 y(X,) sec B 
- w  

The integrand of the second part is a perfectly well behaved function whereas 
the first part, I, say, can be written as 

because 

and 

[(See Lighthill 1959, p. 39.) The Fourier transform 

which with y = m fXp and x = X ,  - X, gives 

- m  m 
Thus 

1 BnnS, + b, sin - 
XP 

sin=1)] XP d ~ ,  
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The contribution to WE from the double integral can be obtained numerically 
and the hydromechanical efficiency can be obtained from 

efficiency = - uL,I(- uZX+WE)) 

where W E  = y, 1 so”xp W,dX,. 

The hydromechanical efficiency of a lunate tail traversing a straight path with 
uniform velocity and executing pitching oscillations about the trailing edge is 
given by Lighthill’s (1970) equation (78) to be 

(w2+4) (F-F2-GZ)  
02(3F - 1) - 6wG 

1- 

(where P and G are the real and imaginary. parts of the Theodorsen (1935) 
function), whose values for different reduced frequencies agree with the results 
obtained by our procedure. It may be pointed out that the value of the efficiency 
is negative in this case. We know that the thrust is positive (in the - X direction) 
if the energy imparted to the wake per unit time is less than the rate of working 
in maintaining the oscillations, but in this case the mean rate of shedding of 
energy into the wake is greater than the mean rate of working because part of the 
energy is being supplied from the fluid. The thrust generated is along the + X axis 
and denotes resistance or drag. This type of motion is never observed in nature 
and is studied here only as a check on our analysis. 

Another verification of the correctness of this method is carried out through 
comparison with small amplitude motion. The vertical displacement of the 
section of the caudal fin stretching along the x axis from - 2c t o  0 is given by 

Y = Y,+(X-Xo)tan(O-a). 

Assuming that the amplitude of the path is small 

tan (0 -a) N 0 - a = - hw sin (wX,/c)  + a, sin (wX,/c). 

Thus Y = h, cos (wX,/c) + (a, - u h ) ( X -  X,) sin (wX,,/c) 

and the feathering parameter, defined as the ratio of the slope of the plate to the 
slope of the path of the pitching axis (in our case the trailing edge), is given by 

12 

tan(0-a) ,-=I-- 8 - a  a0 

tan 0 8 ’ wh‘ 
F L Y  74 



178 M .  G. Chopra 

0.8 

0.6 

0.4 

7 
0.2 

0 

-0.2 

-0'4 

2.0 1 

0=0.1 
w=0.2 
w=0.3 
w = 0.4 
w=0.5 

1.6 

1.4 

1.2 

1 .o 
c~ 0.8 

0.6 

0.4 

0.2 

0 

- 0.2 
0 1.0 2.0 3.0 4.0 5.0 6.0 

h 

(a) 
FIGURE 2. Thrust coefficient C, and efficiency 7 predicted by two-dimensional finite 
amplitude aerofoil theory for values of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 of the reduced fre- 
quency plotted as functions of h (= hl/c, i.e. the path amplitude scaled on tail's semi- 
chord length) for (a) a, = 0.16 rad, ( b )  a, = 0.24 rad, (c) a, = 0.32 red. 

The feathering parameter for w = 0-2, h = 1 and a,, = 0.16 rad turns out to 
0.2 and the hydromechanical propulsive efficiency for the motion specified by 
these parameters is 0.80, which agrees with the value obtained by Lighthill 
(1970). These comparisons add to the confidence in these finite amplitude 
lunate-tail hydrodynamics. 
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FIGURE 2 ( b ) .  For legend see p. 178. 

Numerical computations have been carried out in order to have a quantitative 
estimate of the dependence of the thrust and efficiency on the amplitude of the 
motion, the angle of attack and the reduced frequency. The thrust coefficient and 
the efficiency are plotted in figure 2 against the amplitude scaled on the semi- 
chord length of the lunate tail for different values of the reduced frequency. 
This clearly brings out the amplitude effect, which is one of the main motivations 
of this study. The effect of the variation of the angle of attack has also been 

12-2 
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FIGURE 2 ( c ) .  For legend see p. 178. 

depicted in figures 2(a)-(c), which are for a,, = 0.16, 0-24 and 0.32 rad respec- 
tively. The tail is assumed to be pitching about the trailing edge primarily 
because Lighthill's (1970) analysis shows preference for the pitching axis to be 
close to the trailing edge for optimum values of the thrust and efficiency. However, 
our analysis, although a little more involved computationally, can be developed 
for other positions of the pitching axis without excessive complications. 

For lower values of the reduced frequency, viz. w = 0.1, the efficiency increases 
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with increases in the amplitude with a peak near h = 10-12 depending on the 
angle of attack, but as the unsteady effects become more and more important 
the peak values of the efficiency, although reduced in magnitude, are realized at 
lower vaIues of the amplitude. It is interesting to note that for intermediate 
values of the reduced frequency (0.3-0-5) there is no sharp maximum and the 
lunate-tailed animal can operate over a large range of amplitudes with fairly 
high values of the efficiency, dictated by the thrust requirements. Still higher 
values of the reduced frequency result in a comparatively steeper rise and fall 
in the efficiency, leaving the animal with a very limited range of efficient 
operational amplitudes. 

Lunate-tailed animals are, essentially, high-speed animals and, therefore, 
must achieve high thrust values besides realizing them efficiently. The thrust 
coefficient C, based on tail area and swimming speed must be large enough to 
balance the drag coefficient based on the animal's total surface area and on the 
swimming speed. We see that this requires a suitable combination of a sufficiently 
high amplitude h and sufficiently high frequency parameter w. The thrust 
coefficient shows marked increases also with increases in the angle of attack but 
the energy imparted to the fluid increases too, resulting in a decrease in the 
propulsive efficiency. This increase in the thrust as a0 increases is entirely due to 
a steep increase in the leading-edge suction force, but realization of high thrust 
values with largish values of a. is not advisabIe because of the likelihood of 
leading-edge separation, which results in a substantial reduction of the thrust as 
well as the efficiency. These considerations suggest that lunate-tailed animals 
may be forced to undulate their tails a t  largish amplitudes and frequencies 
with a lower angle of attack to ensure the requisite thrust values accompanying 
high speeds. These remarks are borne out by figures 2 (a)-(c), which compare the 
variation of thrust and efficiency with the amplitude, the reduced frequency and 
the angle of attack. 

The most efficient swimming is with large amplitudes accompanied by very 
small values of the angle of attack and the reduced frequency but the thrust 
values then realized are very low, whereas for higher values of the angle of 
attack and reduced frequency accompanied by high values of the amplitude the 
thrust values are enhanced but the efficiency is lowered. Thus the swimming 
animal has to strike a balance between the competing trends of thrust and 
efficiency and undulate its tail appropriately to realize those values of the 
angle of attack, the amplitude and the reduced frequency which give optimum 
swimming performance. This investigation suggests a preference for reduced 
frequencies around 0.4 accompanied by an amplitude as high as twice the mean 
chord length of the lunate tail, which seems to be in line with the data available 
from the carefully documented experiments of Fierstine & Walters (1968) on 
wavyback skipjacks. 

This theory overestimates the values of the thrust and the efficiency as the 
streamwise wake vorticity, resulting from the finiteness of the lunate tail, has 
not been taken into account. The analysis for a finite lunate tail performing 
finite amplitude oscillations can be developed, for a model rectangular shape, 
using the ideas of Sears (1938) and Chopra (1974). A crescent-moon-shaped tail 
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performing small amplitude oscillations is being studied by Chopra & Kambe, 
using lifting-surface theory, with the aim of discussing the shape of the vortices 
shed into the wake and their relevance to  Lighthill’s (1970) principal suggestion, 
that a crescent-moon shape of the tail seems to  be the culminating point of the 
evolution of the fast-moving aquatic animals in the enhancement of speed and 
hydromechanical efficiency because it may assist shedding of circular vortex 
rings, which in general are very good devices for carrying as much momentum as 
possible in relation to their energy. However, the problem of crescent-moon- 
shaped tails performing finite amplitude oscillations still needs careful consider- 
ation. 

The author acknowledges with gratitude the benefit of suggestions and com- 
ments from Professor Sir James Lighthill, F.R.S., Lucasian Professor. Thanks 
are also due to Professor T. Y. Wu for his interest and helpful discussions on some 
aspects of the problem and to the Association of the Commonwealth Universities 
for a post-doctoral award. 
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